The generator matrix 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 X X X X X X X X X X X X X X X 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 X^2 X^2 X^2 X^2 X^2 X^2 X^2 X^2 X^2 X^2 X^2 X^2 X^2 X^2 X^2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 X^3 0 0 0 0 0 0 0 X^3 X^3 X^3 X^3 X^3 X^3 X^3 0 0 0 0 0 0 0 0 X^3 X^3 X^3 X^3 X^3 X^3 X^3 X^3 0 0 0 0 X^3 X^3 X^3 X^3 0 0 X^3 X^3 0 X^3 X^3 0 0 0 0 0 0 0 0 X^3 X^3 X^3 X^3 X^3 X^3 X^3 X^3 0 0 0 0 X^3 X^3 X^3 X^3 0 0 X^3 X^3 0 X^3 X^3 0 0 0 0 X^3 X^3 0 0 X^3 X^3 0 0 X^3 X^3 0 0 X^3 0 0 0 X^3 X^3 X^3 X^3 X^3 0 X^3 X^3 0 0 0 0 0 0 X^3 X^3 X^3 X^3 X^3 X^3 X^3 X^3 0 0 0 0 0 0 X^3 X^3 X^3 X^3 0 0 0 X^3 X^3 0 X^3 X^3 0 0 0 0 0 X^3 X^3 X^3 X^3 X^3 X^3 X^3 X^3 0 0 0 0 0 0 X^3 X^3 X^3 X^3 0 0 0 X^3 X^3 0 X^3 X^3 0 0 0 0 X^3 X^3 0 0 X^3 X^3 0 X^3 X^3 X^3 X^3 0 0 0 X^3 0 X^3 X^3 X^3 0 0 0 0 X^3 X^3 X^3 X^3 0 0 X^3 X^3 X^3 X^3 0 0 0 0 X^3 X^3 X^3 X^3 0 0 0 X^3 X^3 0 0 X^3 X^3 0 X^3 X^3 0 0 0 X^3 X^3 0 0 X^3 X^3 X^3 X^3 0 0 0 0 X^3 X^3 X^3 X^3 0 0 0 X^3 X^3 0 0 X^3 X^3 0 X^3 X^3 0 0 0 X^3 X^3 0 0 X^3 X^3 0 0 X^3 X^3 X^3 X^3 0 0 0 0 0 0 0 0 X^3 X^3 0 X^3 X^3 0 X^3 X^3 X^3 0 0 X^3 0 X^3 X^3 0 0 X^3 X^3 0 0 X^3 X^3 0 0 X^3 X^3 0 X^3 X^3 0 0 0 0 X^3 X^3 0 X^3 X^3 0 X^3 X^3 0 0 X^3 X^3 0 0 X^3 X^3 0 0 X^3 X^3 0 0 X^3 X^3 0 X^3 X^3 0 0 0 0 X^3 X^3 0 X^3 X^3 0 X^3 X^3 0 0 X^3 X^3 0 0 0 0 X^3 X^3 0 X^3 0 X^3 0 generates a code of length 92 over Z2[X]/(X^4) who´s minimum homogenous weight is 91. Homogenous weight enumerator: w(x)=1x^0+60x^91+175x^92+15x^96+4x^107+1x^124 The gray image is a linear code over GF(2) with n=736, k=8 and d=364. This code was found by Heurico 1.16 in 0.812 seconds.